Here, we show that miR-515-5p inhibits cancer cell migration and metastasis. RNA-seq analyses of both oestrogen receptor receptor-positive and receptor-negative breast cancer cells overexpressing miR-515-5p reveal down-regulation of NRAS, FZD4, CDC42BPA, PIK3C2B and MARK4 mRNAs. We demonstrate that miR-515-5p inhibits MARK4 directly 3' UTR interaction and that MARK4 knock-down mimics the effect of miR-515-5p on breast and lung cancer cell migration. MARK4 overexpression rescues the inhibitory effects of miR-515-5p, suggesting miR-515-5p mediates this process through MARK4 down-regulation. Furthermore, miR-515-5p expression is reduced in metastases compared to primary tumours derived from both in vivo xenografts and samples from patients with breast cancer. Conversely, miR-515-5p overexpression prevents tumour cell dissemination in a mouse metastatic model. Moreover, high miR-515-5p and low MARK4 expression correlate with increased breast and lung cancer patients' survival, respectively. Taken together, these data demonstrate the importance of miR-515-5p/MARK4 regulation in cell migration and metastasis across two common cancers.
Keywords: breast cancer; lung cancer; miR‐515‐5p; microRNAs; microtubule affinity‐regulating kinase 4.
© 2016 The Authors. Published under the terms of the CC BY 4.0 license.