The ability of the SLC6 family members, the insect neutral amino acid cotransporter KAAT1(K(+)-coupled amino acid transporter 1) and its homologous CAATCH1(cation anion activated amino acid transporter/channel), to transport D-amino acids has been investigated through heterologous expression in Xenopus laevis oocytes and electrophysiological techniques. In the presence of D-isomers of leucine, serine, and proline, the msKAAT1 generates inward, transport-associated, currents with variable relative potencies, depending on the driving ion Na(+) or K(+). Higher concentrations of D-leucine (≥1 mmol/L) give rise to an anomalous response that suggests the existence of a second binding site with inhibitory action on the transport process. msCAATCH1 is also able to transport the D-amino acids tested, including D-leucine, whereas L-leucine acts as a blocker. A similar behavior is exhibited by the KAAT1 mutant S308T, confirming the relevance of the residue in this position in L-leucine binding and the different interaction of D-leucine with residues involved in transport mechanism. D-leucine and D-serine on various vertebrate orthologs B(0)AT1 (SLC6A19) elicited only a very small current and singular behavior was not observed, indicating that it is specific of the insect neutral amino acid transporters. These findings highlight the relevance of D-amino acid absorption in the insect nutrition and metabolism and may provide new evidences in the molecular transport mechanism of SLC6 family.
Keywords: D‐amino acids; SLC6; Xenopus oocytes; voltage clamp.
© 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.