Objective: Complete resection of contrast-enhancing tumor is an important prognostic factor in glioblastoma therapy. The current clinical standard for control of resection is magnetic resonance imaging (MRI). (18)F-Fluoroethyl-l-thyrosine (FET) is a positron emission tomography (PET) radiopharmaceutical applicable for widespread use because of its long half-life radionuclide. We assessed the sensitivity of postoperative MRI versus FET-PET to detect residual tumor and the impact of the time interval between resection and FET-PET.
Methods: MRI and FET-PET were performed preoperatively and postoperatively in 62 patients undergoing 63 operations. FET-PET was performed in 43 cases within 72 hours after resection and in 20 cases >72 hours after resection. Detection and measurement of volume of residual tumors were compared. Correlations between residual tumor detection and timing of PET after resection and recurrence were examined.
Results: Complete resection was confirmed by both imaging modalities in 44% of cases, and residual tumor was detected consistently in 37% of cases. FET-PET detected residual tumor in 14% of cases in which MRI showed no residual tumor. MRI showed residual tumors in 5% of cases that were not identified by PET. Average PET-based residual tumor volume was higher than MRI-based volume (3.99 cm(3) vs. 1.59 cm(3)). Detection of and difference in volume of residual tumor were not correlated with timing of PET after resection or recurrence status.
Conclusions: Postoperative FET-PET revealed residual tumor with higher sensitivity than MRI and showed larger tumor volumes. In this series, performing PET >72 hours after resection did not influence the results of PET. We recommend FET-PET as a helpful adjunct in addition to MRI for postoperative assessment of residual tumor.
Keywords: Control of resection; FET-PET; Glioblastoma; Positron emission tomography; Recurrence; Surgery.
Copyright © 2016 Elsevier Inc. All rights reserved.