A microRNA-mediated decrease in eukaryotic initiation factor 2α promotes cell survival during PS-341 treatment

Sci Rep. 2016 Feb 22:6:21565. doi: 10.1038/srep21565.

Abstract

MicroRNAs (miRs) play pivotal roles in carcinogenesis and endoplasmic reticulum (ER) that performs the folding, modification and trafficking of proteins targeted to the secretory pathway. Cancer cells often endure ER stress during tumor progression but use the adaptive ER stress response to gain survival advantage. Here we report: (i) A group of miRs, including miR-30b-5p and miR-30c-5p, are upregulated by proteasome inhibitor PS-341 treatment, in HepG2 and MDA-MB-453 cells. (ii) Two representative PS-341-induced miRs: miR-30b-5p and miR-30c-5p are found to promote cell proliferation and anti-apoptosis in both tumor cells. (iii) eIF2α is confirmed as the congenerous target of miR-30b-5p and miR-30c-5p, essential to the anti-apoptotic function of these miRs. (iv) Upregulation of miR-30b-5p or miR-30c-5p, which occurs latter than the increase of phosphorylated eIF2α (p-eIF2α) in the cell under ER stress, suppresses the p-eIF2α/ATF4/CHOP pro-apoptotic pathway. (v) Inhibition of the miR-30b-5p or miR-30c-5p sensitizes the cancer cells to the cytotoxicity of proteasome inhibition. In conclusion, we unravels a new miRs-based mechanism that helps maintain intracellular proteostasis and promote cell survival during ER stress through upregulation of miR-30b-5p and miR-30c-5p which target eIF2α and thereby inhibit the p-eIF2α/ATF4/CHOP pro-apoptotic pathway, identifying miR-30b-5p and miR-30c-5p as potentially new targets for anti-cancer therapies.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Activating Transcription Factor 4 / biosynthesis
  • Animals
  • Apoptosis / drug effects
  • Bortezomib / administration & dosage
  • Carcinogenesis / genetics*
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Endoplasmic Reticulum Stress / genetics
  • Eukaryotic Initiation Factor-2 / biosynthesis*
  • Eukaryotic Initiation Factor-2 / genetics
  • Hep G2 Cells
  • Humans
  • MicroRNAs / biosynthesis
  • MicroRNAs / genetics*
  • Neoplasms / genetics*
  • Neoplasms / pathology
  • Proteasome Inhibitors / administration & dosage
  • Transcription Factor CHOP / biosynthesis

Substances

  • ATF4 protein, human
  • DDIT3 protein, human
  • Eukaryotic Initiation Factor-2
  • MIRN30b microRNA, human
  • MicroRNAs
  • Proteasome Inhibitors
  • Activating Transcription Factor 4
  • Transcription Factor CHOP
  • Bortezomib