Experimental autoimmune encephalomyelitis (EAE) is a model for the study of multiple sclerosis, which is an inflammatory and demyelinating disease of the central nervous system (CNS). Despite increased efforts to elucidate the function of toll-like receptors (TLRs) in autoimmune diseases of the CNS, the relative contribution of other factors, including the immunomodulatory properties of TLR signaling, role of the innate response and the presence or absence of myelin peptides remain unclear. The aim was to evaluate TLR expression in the CNS during EAE development by investigating the expression of TLRs in the initial phase of EAE and establishing correlations with the modulation of inflammatory factors. Mice were subcutaneously immunized at the tail base with 100 μg of myelin oligodendrocyte glycoprotein peptide (MOG35-55), emulsified in complete Freund's adjuvant (CFA) supplemented with 400 μg of attenuated Mycobacterium tuberculosis H37RA. Pertussis toxin (300 ng per animal) was intraperitoneally injected on the day of immunization and 48 h later. Another group (MOG(-)) received an equal emulsion of CFA and M. tuberculosis, without MOG35-55, and the same protocol of Pertussis toxin. The immunized mice presented signs of disease with increased IFN-γ production and presence of NK cells on Day 2 postimmunization and reduced the expression of TLR-3 and TLR-9. In the spinal cord, CCL5 and CCL20 were higher in EAE. This study establishes a correlation between TLR-3 and TLR-9 expression with the development of EAE. In addition, evidence of a role for the myelin peptide in targeting the innate inflammatory response to the CNS is presented.
Keywords: EAE; IFN-γ; Multiple sclerosis; toll-like.