Background: The brainstem is one of the most challenging areas for the neurosurgeon because of the limited space between gray matter nuclei and white matter pathways. Diffusion tensor imaging-based tractography has been used to study the brainstem structure, but the angular and spatial resolution could be improved further with advanced diffusion magnetic resonance imaging (MRI).
Objective: To construct a high-angular/spatial resolution, wide-population-based, comprehensive tractography atlas that presents an anatomical review of the surgical approaches to the brainstem.
Methods: We applied advanced diffusion MRI fiber tractography to a population-based atlas constructed with data from a total of 488 subjects from the Human Connectome Project-488. Five formalin-fixed brains were studied for surgical landmarks. Luxol Fast Blue-stained histological sections were used to validate the results of tractography.
Results: We acquired the tractography of the major brainstem pathways and validated them with histological analysis. The pathways included the cerebellar peduncles, corticospinal tract, corticopontine tracts, medial lemniscus, lateral lemniscus, spinothalamic tract, rubrospinal tract, central tegmental tract, medial longitudinal fasciculus, and dorsal longitudinal fasciculus. Then, the reconstructed 3-dimensional brainstem structure was sectioned at the level of classic surgical approaches, namely supracollicular, infracollicular, lateral mesencephalic, perioculomotor, peritrigeminal, anterolateral (to the medulla), and retro-olivary approaches.
Conclusion: The advanced diffusion MRI fiber tracking is a powerful tool to explore the brainstem neuroanatomy and to achieve a better understanding of surgical approaches.
Abbreviations: CN, cranial nerveCPT, corticopontine tractCST, corticospinal tractCTT, central tegmental tractDLF, dorsal longitudinal fasciculusHCP, Human Connectome ProjectML, medial lemniscusMLF, medial longitudinal fasciculusRST, rubrospinal tractSTT, spinothalamic tract.