Background: Nucleic acid amplification tests are widely used in TB diagnostics. Priority tasks in their development consist of increasing the specificity and sensitivity of the detection of resistance to a wide spectrum of anti-TB drugs.
Methods: We developed a multiplexed assay allowing the detection of 116 drug resistance-determining mutations in the rpoB, katG, inhA, ahpC, gyrA, gyrB, rrs, eis and embB genes in the Mycobacterium tuberculosis complex genome and six SNPs to identify the main lineages circulating in Russia. The assay is based on the amplification of 17 fragments of the genome using the universal primer adapter technique and heat pulses at the elongation step, followed by hybridization on a microarray.
Results: The method was evaluated using 264 pairs of clinical samples and corresponding isolates. A significant proportion (25%) of smear-negative samples were correctly analysed by microarray analysis in addition to 96% of smear-positive samples. The sensitivity and specificity of the assay exceeded 90% for rifampicin, isoniazid, ofloxacin and second-line injection drugs. In agreement with previous studies, the specificity of ethambutol resistance was as low as 57%, while the sensitivity was 89.9%. Strong association of the Beijing lineage with a resistant phenotype was observed. Euro-American lineage strains, excluding Ural and LAM, were predominantly associated with the susceptible phenotype.
Conclusions: The developed test has a high sensitivity and specificity and can be directly applied to clinical samples. The combination of mutation-based drug resistance profiling and basic genotyping could be useful for clinical microbiology studies and epidemiological surveillance of the M. tuberculosis complex.
© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: [email protected].