We proposed based on first principles density functional theory calculations that a nano-scale thin film based on a polar-nonpolar transition-metal oxide heterostructure can be used as a highly-efficient photocatalyst. This is demonstrated using a SrTiO3/LaAlO3/SrTiO3 sandwich-like heterostructure with photocatalytic activity in the near-infrared region. The effect of the polar nature of LaAlO3 is two-fold. First, the induced electrostatic field accelerates the photo-generated electrons and holes into opposite directions and minimizes their recombination rates. Hence, the reduction and oxidation reactions can be instigated at the SrTiO3 surfaces located on the opposite sides of the heterostructure. Second, the electric field reduces the band gap of the system making it photoactive in the infrared region. We also show that charge separation can be enhanced by using compressive strain engineering that creates ferroelectric instability in STO. The proposed setup is ideal for tandem oxide photocatalysts especially when combined with photoactive polar materials.