Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), a type I transmembrane glycoprotein, is known as one of the most specific lymphatic vessel markers in the skin. In this study, we found that the ectodomain of LYVE-1 undergoes proteolytic cleavage, and this process produces soluble LYVE-1. We further identified the cleavage site for ectodomain shedding and generated an uncleavable mutant of LYVE-1. In lymphatic endothelial cells, ectodomain shedding of LYVE-1 was induced by vascular endothelial growth factor (VEGF)-A, an important factor for angiogenesis and lymphangiogenesis under pathological conditions. VEGF-A-induced LYVE-1 ectodomain shedding was mediated via the extracellular signal-regulated kinase (ERK) and a disintegrin and metalloproteinase (ADAM) 17. Wild-type LYVE-1, but not uncleavable LYVE-1, promoted migration of lymphatic endothelial cells in response to VEGF-A. Immunostaining analyses in human psoriasis skin lesions and VEGF-A transgenic mouse skin suggested that the ectodomain shedding of LYVE-1 occurred in lymphatic vessels undergoing chronic inflammation. These results indicate that the ectodomain shedding of LYVE-1 might be involved in promoting pathological lymphangiogenesis.
Keywords: ADAM; endothelial cell; extracellular signal-regulated kinase (ERK); hyaluronan; lymphangiogenesis; lymphatic endothelial hyaluronan receptor 1 (LYVE-1); psoriasis; shedding; skin; vascular endothelial growth factor (VEGF).
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.