Dynamic biomaterials are biocompatible engineered systems capable of sensing and actively responding to their surrounding environment. They are of growing interest, both as models in basic research to understand complex cellular systems and in medical applications. Here, we review recent advances in nano-scale and micro-scale biomaterials, specifically artificial cells consisting of compartmentalized biochemical reactions and biologically compatible hydrogels. These dynamic biomaterials respond to stimuli through triggered reactions, reaction cascades, logic gates, and autonomous feedback loops. We outline the advances and remaining challenges in implementing such 'smart' biomaterials capable of autonomously responding to environmental stimuli.
Published by Elsevier Ltd.