The electronic structure of gas-phase methanol molecules (H3COH, H3COD, and D3COD) at atmospheric pressure was investigated using resonant inelastic soft X-ray scattering (RIXS) at the O K and C K edges. We observe strong changes of the relative emission intensities of all valence orbitals as a function of excitation energy, which can be related to the symmetries of the involved orbitals causing an angularly anisotropic RIXS intensity. Furthermore, all observed emission lines are subject to strong spectator shifts of up to -0.9 eV at the O K edge and up to -0.3 eV at the C K edge. At the lowest O K resonance, we find clear evidence for dissociation of the methanol molecule on the time scale of the RIXS process, which is illustrated by comparing X-ray emission spectra of regular and deuterated methanol.