The potential consequences of a major radiological event are not only large-scale external radiation exposure of the population, but also uncontrolled dissemination of, and internal contamination with, radionuclides. When planning an emergency response to radiological and nuclear incidents, one must consider the need for not only post-exposure treatment for contaminated individuals, but also prophylactic measures to protect the workforce facing contaminated areas and patients in the aftermath of such events. In addition to meeting the desired criteria for post-exposure treatments such as safety, ease of administration, and broad-spectrum efficacy against multiple radionuclides and levels of challenge, ideal prophylactic countermeasures must include rapid onset; induce minimal to no performance-decrementing side effects; be compatible with current military Chemical, Biological, Radiological, Nuclear, and Explosive countermeasures; and require minimal logistical burdens. Hydroxypyridinone-based actinide decorporation agents have shown the most promise as decorporation strategies for various radionuclides of concern, including the actinides plutonium and americium. The studies presented here probe the extent of plutonium decorporation efficacy for two chelating agents, 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO), from early pre-exposure time points to a delay of up to 7 days in parenteral or oral treatment administration, i.e., well beyond the initial hours of emergency response. Despite delayed treatment after a contamination event, both ligands clearly enhanced plutonium elimination through the investigated 7-day post-treatment period. In addition, a remarkable prophylactic efficacy was revealed for 3,4,3-LI(1,2-HOPO) with treatment as early as 48 h before the plutonium challenge. This work provides new perspectives in the indication and use of experimental actinide decorporation treatments.
Keywords: Chelation therapy; Contamination; Medical countermeasure; Prophylaxis; Radionuclides.
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.