The mechanisms of cell cycle exit by myoblasts during skeletal muscle development are poorly understood. Cell cycle arrest is known to be a prerequisite for myoblast fusion and subsequent differentiation. Despite tremendous knowledge on myoblast fusion and differentiation, tissue-specific factors that spatio-temporally regulate the cell cycle exit are not well known. In this paper, we show that the transcriptional factor/co-activator "Erect wing" (Ewg) synchronises myoblast cell cycle exit with that of the fusion process. Ewg-null myoblasts show delayed temporal development of dorsal longitudinal muscles (DLMs), a group of indirect flight muscles (IFMs), which culminates to abnormal and asymmetric muscle pattern. A role for Ewg in cell cycle exit at G1/S stage is also shown. Reducing Cyclin E dose in Ewg-null mutant rescues the lack of IFMs and flight ability. Thus, we show that Ewg repression of Cyclin E expression is required for the arrest of myoblast proliferation and initiate myoblast fusion and terminal differentiation.
Keywords: Cyclin E; Drosophila; Erect wing; Muscle development; NRF-1.
Copyright © 2016 Elsevier B.V. All rights reserved.