Objective: To examine the relationship between brown adipose tissue (BAT) and muscle development, two tissues that derive from a common cell lineage, during the first 6 months of postnatal life.
Study design: Thirty healthy term infants (15 males and females) underwent whole-body magnetic resonance imaging examinations. Measurements of BAT in the supraclavicular area as well as measures of trunk musculature and subcutaneous adiposity were obtained at birth and at 6 months of age.
Results: Paraspinous musculature and subcutaneous white adipose tissue (WAT) increased, and the proportion of BAT in the supraclavicular area decreased during infancy. Although measures of BAT did not correlate with paraspinous musculature through the first 6 months of life (r = -0.35; P = .09), BAT was a significant predictor of paraspinous musculature after adjusting for weight, body length, and WAT (P = .002); infants with the smallest decreases in BAT had the greatest gains in musculature. In contrast, changes in BAT did not predict increases in subcutaneous WAT (P = .25) during infancy, which were primarily determined by body weight.
Conclusions: Changes in BAT are associated with muscle development but not WAT accumulation in healthy infants. Studies are needed to determine the mechanism(s) by which BAT could facilitate muscle growth, and the degree to which decreased muscle mass, such as in preterm and low birth weight infants, is related to a deficiency of BAT.
Keywords: MRI; brown fat; infants; musculature.
Copyright © 2016 Elsevier Inc. All rights reserved.