VTX-1463, a novel TLR-8 agonist, attenuates nasal congestion after ragweed challenge in sensitized beagle dogs

Immun Inflamm Dis. 2015 Dec 7;4(1):45-51. doi: 10.1002/iid3.91. eCollection 2016 Mar.

Abstract

VTX-1463 is a selective toll-like receptor (TLR) 8 agonist that activates a subset of innate immune cells to produce a unique cytokine profile. Delivery of VTX-1463 via nasal spray may modulate the nasal response in allergic rhinitis. The aim of this study was to determine the effects of VTX-1463 on the nasal response in a dog model of allergic rhinitis. Ragweed (RW)-sensitized dogs were pretreated with increasing doses of VTX-1463 1 day prior to RW challenge or with two doses (4 or 8 days and 1 day prior to RW). Changes in nasal cavity volume (NV) were determined by acoustic rhinometry and nasal lavage fluid was assessed for histamine, lipid mediators, and cellular infiltrates at sequential times following RW challenge. VTX-1463 pretreatment significantly preserved NV during the acute response to RW challenge for all doses tested. The area under the curve (AUC) for NV over the 1.5 h assessment period in RW challenged vehicle controls averaged 51.5% (SEM: ±2.12%) of the baseline NV over all studies. A single 100 µg dose of VTX-1463 given 1 day prior to RW yielded an AUC for NV of 69.3% (±6.59%) of baseline, while a 1000 µg dose administered twice (8 days and 1 day prior to RW) resulted in an AUC for NV of 85.4% (±4.74%, P < 0.05) of baseline. For a single 1000 µg VTX-1463 dose 1 day prior to RW, multiple mediators produced by mast cells, including histamine, PGE2, PGD2, and cysteinyl LTs, were significantly reduced relative to the vehicle control. The selective TLR8 agonist, VTX-1463, preserved NV in a dose-dependent manner in the acute phase of a nasal allergic response. The therapeutic effect appears to result from attenuated mast cell mediator release. Modulating the local cytokine response via TLR8 agonism appears to have a therapeutic effect on the acute allergic nasal response.

Keywords: Allergic; dog model; nasal congestion; ragweed; rhinitis; rhinometry; toll‐like receptor.