Aim: This work aimed to study the role played by dogs in transmitting zoonotic enteric parasites to humans in Egypt and to analyze the risk factors associated with the occurrence of such infection in dogs. Serodiagnosis of anti-Toxocara immunoglobulin G (IgG) antibodies among human beings as well as analyzing risk factors predispose to Toxocara canis infection in human beings are another objectives of this study.
Materials and methods: From June to December 2013, a total of 130 fecal samples from 4 dog populations (Military, nomadic and domiciled dogs from rural and high standard districts) and 150 stool samples of 6 occupational groups were examined for the presence of enteric parasitic infection. Moreover, 150 serum samples were collected from humans from whom stool samples were collected and examined for the presence of anti-T. canis antibodies.
Results: Enteric parasites were detected in 30% of fecal samples from 4 dog populations in Egypt. High infectivity had been reported in nomadic dogs (63.33%) (Crude odds ratios [COR]=67.36, 95% confidence interval [CI]=8.09-560.8, p<0.000), followed by domiciled dogs from rural areas (40%) (COR=26, 95% CI=3.14-215.54, p=0.003), domiciled dogs from high standard areas (23.33%) (COR=11.87, 95% CI=1.37-102.69, p=0.025) and military dogs (2.5%). Twelve species of enteric parasites were identified, Ancylostomatidae (6.15%), T. canis and Cryptosporidium spp. (5.38%, each), Heterophyes spp. (3.85%), Toxocara leonina and Blastocystis spp. (3.07%), Taenidae eggs (2.31%), Hymenolepis diminuta (1.54%) and Entamoeba canis, Cyclospora cayetanensis, and Paragonimus spp. (0.77%, each). Univariate logestic regression revealed significant association of age (COR=4.73, 95% CI=2.13-10.53, p<0.000), gender (COR=2.63, 95% CI=1.22-5.68, p<0.014), housing system (COR=5.10, 95% CI=2.04-12.75), p<0.000) with enteric parasitic infection in dogs. However, breeds (COR=6.91, 95% CI=0.88-54.52, p=0.067) and type of feeding (COR ranged from 3.5 to 7.62, p>0.05) did not seem to have a significant association among the examined dogs. Enteric parasitic infection was reported in 31/150 human stools (20.67%). Students were the most affected groups (37.14%), followed by nomadic people (24%), house wives (20%), house guarders and military workers (12%, each), and employees (10%). The identified parasites were Cryptosporidium spp. (9.33%), Ascaris lumbercoides (3.33%), Heterophyes spp. and Ancylostoma spp. (2.66%, each) and Paragonimus spp. and Hymenolepis nana (1.33%, each). Toxocara IgG antibodies were detected in 36/150 (24%) serum samples investigated. Toxocara IgG antibodies were more prevalent in males (26.66%) than females (20%). Seroprevalence was highest (17/35, 48.57%) in 7-15 years old (COR=6.93, 95% CI=1.75-27.43, p=0.006). Seroprevalence values for T. canis antibodies were higher in those; raising dogs (29.85%), eating raw vegetables (25.21%) and not washing hands before meals (25.45%). T. canis antibodies were detected in 25% of those contacted with soil compared to 30% of those did not. Students were mostly affected (34.29%), followed by nomadic people (32%), house guarders (28%), housewives (20%), military workers (13%), and employees (10%).
Conclusion: Detection of enteric parasites in dogs and humans in Egypt substantiates the role posed by dogs in transmitting zoonotic parasites to humans and knock an alarm for common sources of infection for humans and dogs. Common sources may be infected fish or contaminated vegetables that are consumed by dogs or humans or even infected rodents that may contaminate their feed. This pilot study necessitate the need for similar studies and tracing such infection in fish, vegetables, rodent that may be responsible for infecting humans and dogs in order to understand the epidemiology of zoonotic parasitic infection transmitted from dogs to humans.
Keywords: dogs; enteric parasites; humans; risk factors; zoonoses.