Aim: Salmonella is an important zoonotic pathogen responsible for animal and human diseases. The aim of the present study was to determine the prevalence and stereotyping of Salmonella isolates isolated from apparently healthy poultry. Furthermore, the clonal relatedness among the isolated Salmonella serovars was assessed.
Materials and methods: A total of 150 cloacal swab samples from apparently healthy chickens were collected, and were subjected for the isolation and identification of associated Salmonella organisms. The isolated colonies were identified and characterized on the basis of morphology, cultural characters, biochemical tests, slide agglutination test, polymerase chain reaction, and pulsed-field gel electrophoresis (PFGE). Antibiotic sensitivity patterns were also investigated using commonly used antibiotics.
Results: Of the 150 samples, 11 (7.33%) produced characteristics pink colony with black center on XLD agar medium, and all were culturally and biochemically confirmed to be Salmonella. All possessed serovar-specific gene SpeF and reacted uniformly with group D antisera, suggesting that all of the isolates were Salmonella Enterica serovar Gallinarum, biovar Pullorum and/or Gallinarum. Antimicrobial susceptibility testing revealed that 54.54% of the isolated Salmonella Enterica serovars were highly sensitive to ciprofloxacin, whereas the 81.81% isolates were resistant to amoxycillin, doxycycline, kanamycin, gentamycin, and tetracycline. Pulsed-field gel electrophoresis of the XbaI-digested genomic DNA exhibited identical banding patterns, suggesting that the multidrug resistant Salmonella Enterica serovars occurring in commercial layers are highly clonal in Bangladesh.
Conclusion: The present study was conducted to find out the prevalence of poultry Salmonella in layer chicken and to find out the clonal relationship among them. The data in this study suggest the prevalence of Salmonella Enterica, which is multidrug resistant and highly clonal for commercial layers of Bangladesh.
Keywords: Salmonella; SpeF gene; polymerase chain reaction; pulsed field gel electrophoresis.