SUV Normalized by Skeletal Volume on 18F-Fluoride PET/CT Studies

Clin Nucl Med. 2016 Jul;41(7):529-33. doi: 10.1097/RLU.0000000000001221.

Abstract

Objective: To propose a technique for SUV normalization on F-fluoride PET/CT (F-NaF) studies based on skeletal volume and to compare the SUVs normalized by this technique with the ones normalized by body weight.

Methods: SUVs were obtained in volumes of interest (VOIs) in proximal diaphyseal regions of the right humerus (HD) and right femur (FD) in 12 selected F-NaF studies. The 12 studies presented both regions considered normal by visual examination on PET and CT and were performed in patients presenting body weight below 50 kg (B50) or above 90 kg (A90) (6 patients in each group). The maximum SUVs were calculated in these 2 bone regions in both groups of patients using body weight (SUV BW) and skeletal volume (SUV SV) methodologies. The total skeletal volume for each patient was estimated based on whole skeletal VOIs automatically defined on the CT component of the PET/CT study. The maximum SUVs calculated using the 2 methodologies were compared.

Results: The maximum SUVs BW were statistically higher in the group A90 in both regions, with a P < 0.001 and P < 0.008 for FD and HD, respectively. The maximum SUVs SV in the 2 regions were not statistically different between the groups B50 and A90, P values of 0.27 and 0.87 for FD and HD, respectively.

Conclusions: The SUVs normalized by skeletal volume present similar results in groups of patients with extremes of body weight. Therefore, this methodology could be more adequate than the one normalized by body weight to semiquantitatively analyze F-NaF studies.

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Body Composition
  • Female
  • Femur / metabolism
  • Fluorides
  • Fluorodeoxyglucose F18 / pharmacokinetics*
  • Humans
  • Humerus / metabolism
  • Middle Aged
  • Phosphates
  • Positron Emission Tomography Computed Tomography / methods*
  • Radiopharmaceuticals / pharmacokinetics*
  • Skeleton / anatomy & histology*
  • Skeleton / metabolism
  • Sodium Fluoride / pharmacokinetics

Substances

  • Phosphates
  • Radiopharmaceuticals
  • Fluorodeoxyglucose F18
  • fluorophosphate
  • Sodium Fluoride
  • Fluorides