Assessment of arsenic speciation and bioaccessibility in mine-impacted materials

J Hazard Mater. 2016 Aug 5:313:130-7. doi: 10.1016/j.jhazmat.2016.03.090. Epub 2016 Mar 31.

Abstract

Mine-impacted materials were collected from Victoria, Australia and categorized into three source materials; tailings (n=35), calcinated (n=10) and grey slimes (n=5). Arsenic (As) concentrations in these materials varied over several orders of magnitude (30-47,000mgkg(-1)), with median concentrations of 500, 10,800 and 1500mgkg(-1), respectively. When As bioaccessibility was assessed using the Solubility Bioaccessibility Research Consortium (SBRC) assay, As bioaccessibility ranged between 4 and 90%, with mean gastric phase values of 30%, 49% and 82% for tailings, calcinated and grey slimes, respectively. An analysis of variance (ANOVA) determined that As bioaccessibility was significantly different (P<0.05) between source materials. This was due to differences in As mineralogy, soil particle size as well as the concentration and nature of Fe present. X-ray Absorption Near Edge Structure (XANES) analysis identified arseniosiderite, yukonite, realgar, loellingite and mineral sorbed arsenate species in mine-impacted materials. Despite differences in physicochemical properties, 'mine wastes' are often reported under a generic descriptor. Outcomes from this research highlight that variability in As bioaccessibility can be prescribed to As mineralogy and matrix physicochemical properties, while categorizing samples into sub-groups can provide some notional indication of potential exposure.

Keywords: Arsenic; Bioaccessibility; Calcinate; Slime; Tailings.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Arsenic / analysis*
  • Australia
  • Biological Availability
  • Mining*
  • Particle Size
  • Soil
  • Soil Pollutants / analysis*

Substances

  • Soil
  • Soil Pollutants
  • Arsenic