Centromere protein-A (CENP-A), a histone-H3 variant, plays an essential role in cell division by ensuring proper formation and function of centromeres and kinetochores. Elevated CENP-A expression has been associated with cancer development. This study aimed to establish whether elevated CENP-A expression can be used as a prognostic and predictive cancer biomarker. Molecular profiling of CENP-A in human cancers was investigated using genomic, transcriptomic and patient information from databases, including COSMIC, Oncomine, Kaplan-Meier plotter and cBioPortal. A network of CENP-A co-expressed genes was derived from cBioPortal and analyzed using Ingenuity Pathway Analysis (IPA) and Oncomine protocols to explore the function of CENP-A and its predictive potential. Transcriptional and post-transcriptional regulation of CENP-A expression was analyzed in silico. It was found that CENP-A expression was elevated in 20 types of solid cancer compared with normal counterparts. Elevated CENP-A expression highly correlated with cancer progression and poor patient outcome. Genomic analysis indicated that the elevated CENP-A expression was not due to alterations in the sequence or copy number of the CENP-A gene. Furthermore, CENP-A can be regulated by key oncogenic proteins and tumor-suppressive microRNAs. CENP-A co-expression network analysis indicated that CENP-A function is associated with cell cycle progression. Oncomine analysis showed a strong correlation between elevated CENP-A expression and oncolytic response of breast cancer patients to taxane-based chemotherapy. In conclusion, elevated CENP-A expression is coupled to malignant progression of numerous types of cancer. It may be useful as a biomarker of poor patient prognosis and as a predictive biomarker for taxane-based chemotherapy.
Keywords: CENP-A; centromere protein-A; co-expression network; predictive biomarker; prognostic biomarker.
© 2016 UICC.