Accuracy of delivered airway pressure and work of breathing estimation during proportional assist ventilation: a bench study

Ann Intensive Care. 2016 Dec;6(1):30. doi: 10.1186/s13613-016-0131-y. Epub 2016 Apr 14.

Abstract

Background: Proportional assist ventilation+ (PAV+) delivers airway pressure (P aw) in proportion to patient effort (P mus) by using the equation of motion of the respiratory system. PAV+ calculates automatically respiratory mechanics (elastance and resistance); the work of breathing (WOB) is estimated by the ventilator. The accuracy of P mus estimation and hence accuracy of the delivered P aw and WOB calculation have not been assessed. This study aimed at assessing the accuracy of delivered P aw and calculated WOB by PAV+ and examining the factors influencing this accuracy.

Methods: Using an active lung model with different respiratory mechanics, we compared (1) the actual delivered P aw by the ventilator to the theoretical P aw as defined by the equation of motion and (2) the WOB value displayed by the ventilator to the WOB measured from a Campbell diagram.

Results: Irrespective of respiratory mechanics and gain, the ventilator provided a P aw approximately 25 % lower than expected. This underassistance was greatest at the beginning of the inspiration. Intrinsic PEEP (PEEPi), associated with an increase in trigger delay, was a major factor affecting PAV+ accuracy. The absolute value of total WOB displayed by the ventilator was underestimated, but the changes in WOB were accurately detected by the ventilator.

Conclusion: The assistance provided by PAV+ well follows P mus but with a constant underassistance. This is associated with an underestimation by the ventilator of the WOB. PEEPi can be a major factor contributing to PAV+ inaccuracy. Clinical recommendations should include using a high trigger sensitivity and a careful PEEP titration.