Numerical solution of the stationary multicomponent nonlinear Schrödinger equation with a constraint on the angular momentum

Phys Rev E. 2016 Mar;93(3):033301. doi: 10.1103/PhysRevE.93.033301. Epub 2016 Mar 1.

Abstract

We formulate a damped oscillating particle method to solve the stationary nonlinear Schrödinger equation (NLSE). The ground-state solutions are found by a converging damped oscillating evolution equation that can be discretized with symplectic numerical techniques. The method is demonstrated for three different cases: for the single-component NLSE with an attractive self-interaction, for the single-component NLSE with a repulsive self-interaction and a constraint on the angular momentum, and for the two-component NLSE with a constraint on the total angular momentum. We reproduce the so-called yrast curve for the single-component case, described in [A. D. Jackson et al., Europhys. Lett. 95, 30002 (2011)], and produce for the first time an analogous curve for the two-component NLSE. The numerical results are compared with analytic solutions and competing numerical methods. Our method is well suited to handle a large class of equations and can easily be adapted to further constraints and components.

Publication types

  • Research Support, Non-U.S. Gov't