The complexation ability of hybrid disilane and ethylene containing crown ether ring systems was analyzed using 1,2-disila[12]crown-4 (1), 1,2-disila[15]crown-5 (2), 1,2-disila[18]crown-6 (3), and 1,2,7,8-tetrasila[12]crown-4 (7). Alkali-metal complexes (Li(+), Na(+), K(+)) were obtained and analyzed via X-ray diffraction. The complex stability of [Li(1,2-disila[12]crown-4)](+) and [Li(1,2,7,8-tetrasila[12]crown-4)](+) was determined, in relation to the lithium complex of [12]crown-4, by density functional theory (DFT) calculations employing the BP86/def2-TZVP level of theory. In solution, the exchange of lithium cations between pure [12]crown-4 and hybrid [12]crown-4 is on even terms, as has been shown from the relative binding affinity of compounds 1 and 7 by means of dynamic proton nuclear magnetic resonance (NMR) spectroscopy.