(29)Si, (47)Ti, (49)Ti and (195)Pt solid state MAS NMR spectroscopic investigations of ternary silicides TPtSi, germanides TPtGe (T = Ti, Zr, Hf) and stannide TiPtSn

Dalton Trans. 2016 May 10;45(19):8215-23. doi: 10.1039/c6dt00861e.

Abstract

Eight ternary tetrelides TPtX (T = Ti, Zr, Hf; X = Si, Ge, Sn) were synthesized from the elements by arc-melting and subsequent annealing. TiPtSi, ZrPtSi, ZrPtGe, HfPtSi and HfPtGe crystallize with the orthorhombic TiNiSi type structure, in the space group Pnma. The structures of HfPtSi (a = 654.44(9), b = 387.97(6), c = 750.0(1) pm, wR2 = 0.0592, 411 F(2) values, 20 variables) and HfPtGe (a = 660.36(7), b = 395.18(4), c = 763.05(8) pm, wR2 = 0.0495, 430 F(2) values, 20 variables) were refined from single crystal X-ray diffractometer data. TiPtSn adopts the cubic MgAgAs type. TiPtGe is dimorphic with a TiNiSi type high-temperature modification which transforms to cubic LT-TiPtGe (MgAgAs type). All phases were investigated by high resolution (29)Si, (47)Ti, (49)Ti and (195)Pt solid state MAS NMR spectroscopy. In the cubic compounds, the (47/49)Ti NMR signals are easily detected owing to the absence of quadrupolar broadening effects. The (195)Pt resonances of the orthorhombic compounds are characterized by strongly negative isotropic Knight shifts and large Knight shift anisotropies, whereas positive isotropic Knight shifts and no anisotropies are observed for the cubic compounds. These results indicate that the phase transition in TiPtGe is associated with dramatic changes in the electronic properties. Within each group of isotypic compounds the isotropic (29)Si, (47/49)Ti and (195)Pt Knight shifts show systematic dependences on the transition metal or tetrel atomic number, suggesting that the numerical values are influenced by the electronegativities of the metallic (or metalloid) neighbours.