Background: Maternal intrauterine infection/inflammation represents the major etiology of preterm delivery and the leading cause of neonatal mortality and morbidity. The aim of this study was to investigate the anti-inflammatory properties of thioredoxin-1 in vivo and its potential ability to attenuate the rate of inflammation-induced preterm delivery.
Methods: Two intraperitoneal injections of lipopolysaccharide from Escherichia coli were administered in pregnant mice on gestational day 15, with a 3-h interval between the injections. From either 1 h before or 1 h after the first lipopolysaccharide injection, mice received three intravenous injections of either recombinant human thioredoxin-1, ovalbumin, or vehicle, with a 3-h interval between injections.
Results: Intraperitoneal injection of lipopolysaccharide induced a rise of tumor necrosis factor-α, interferon-γ, monocyte chemotactic protein 1, and interleukin-6 in maternal serum levels and provoked preterm delivery. Recombinant human thoredoxin-1 prevented the rise in these proinflammatory cytokine levels. After the inflammatory challenge, placentas exhibited severe maternal vascular dilatation and congestion and a marked decidual neutrophil activation. These placental pathological findings were ameliorated by recombinant human thioredoxin-1, and the rate of inflammation-induced preterm delivery was attenuated.
Conclusion: Thioredoxin-1 may thus represent a novel effective treatment to delay inflammation-induced preterm delivery.