PET Imaging of Atherosclerotic Disease: Advancing Plaque Assessment from Anatomy to Pathophysiology

Curr Atheroscler Rep. 2016 Jun;18(6):30. doi: 10.1007/s11883-016-0584-3.

Abstract

Atherosclerosis is a leading cause of morbidity and mortality. It is now widely recognized that the disease is more than simply a flow-limiting process and that the atheromatous plaque represents a nidus for inflammation with a consequent risk of plaque rupture and atherothrombosis, leading to myocardial infarction or stroke. However, widely used conventional clinical imaging techniques remain anatomically focused, assessing only the degree of arterial stenosis caused by plaques. Positron emission tomography (PET) has allowed the metabolic processes within the plaque to be detected and quantified directly. The increasing armory of radiotracers has facilitated the imaging of distinct metabolic aspects of atherogenesis and plaque destabilization, including macrophage-mediated inflammatory change, hypoxia, and microcalcification. This imaging modality has not only furthered our understanding of the disease process in vivo with new insights into mechanisms but has also been utilized as a non-invasive endpoint measure in the development of novel treatments for atherosclerotic disease. This review provides grounding in the principles of PET imaging of atherosclerosis, the radioligands in use and in development, its research and clinical applications, and future developments for the field.

Keywords: Atherosclerosis; Carotid stenosis; Coronary artery disease; Positron emission tomography.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Atherosclerosis / diagnostic imaging*
  • Atherosclerosis / pathology
  • Atherosclerosis / physiopathology
  • Humans
  • Plaque, Atherosclerotic / diagnostic imaging*
  • Plaque, Atherosclerotic / pathology
  • Plaque, Atherosclerotic / physiopathology
  • Positron-Emission Tomography*