Modeling the autistic cell: iPSCs recapitulate developmental principles of syndromic and nonsyndromic ASD

Dev Growth Differ. 2016 Jun;58(5):481-91. doi: 10.1111/dgd.12280. Epub 2016 Apr 25.

Abstract

The opportunity to model autism spectrum disorders (ASD) through generation of patient-derived induced pluripotent stem cells (iPSCs) is currently an emerging topic. Wide-scale research of altered brain circuits in syndromic ASD, including Rett Syndrome, Fragile X Syndrome, Angelman's Syndrome and sporadic Schizophrenia, was made possible through animal models. However, possibly due to species differences, and to the possible contribution of epigenetics in the pathophysiology of these diseases, animal models fail to recapitulate many aspects of ASD. With the advent of iPSCs technology, 3D cultures of patient-derived cells are being used to study complex neuronal phenotypes, including both syndromic and nonsyndromic ASD. Here, we review recent advances in using iPSCs to study various aspects of the ASD neuropathology, with emphasis on the efforts to create in vitro model systems for syndromic and nonsyndromic ASD. We summarize the main cellular activity phenotypes and aberrant genetic interaction networks that were found in iPSC-derived neurons of syndromic and nonsyndromic autistic patients.

Keywords: autism; autism spectrum disorder; brain development; disease model; induced pluripotent stem cell.

Publication types

  • Review

MeSH terms

  • Animals
  • Autism Spectrum Disorder / metabolism*
  • Autism Spectrum Disorder / pathology
  • Humans
  • Induced Pluripotent Stem Cells / metabolism*
  • Induced Pluripotent Stem Cells / pathology
  • Models, Biological*