Background: Previous clinical trials have demonstrated the impact of blocking upstream renin-angiotensin-axis with angiotensin converting enzyme inhibitors (ACEIs) on arterial stiffness as evaluated by pulse-wave velocity (PWV). We ran a meta-analysis to evaluate the anti-stiffness effect of powerful downstream angiotensin receptor blockades (ARBs) on peripheral and central arterial stiffness (brachial to ankle, ba-PWV; carotid to femoral, cf-PWV, respectively), using a systematic review to assess the clinical arterial stiffness issues.
Methods: For our study, we searched the PubMed and Cochrane Library databases from inception to June 2013, targeting randomized controlled trials. ARBs along with other antihypertensive agents, ACEIs, calcium channel blockers (CCBs), beta-blockers and diuretics were evaluated to ascertain their comparable effect on ba-PWV and cf-PWV, respectively. A meta-analysis was conducted utilizing the fixed or random effect of the weighted mean change difference between the ARB and comparator groups, depending on the I(2) statistic heterogeneity measurement.
Results: In 2 trials treating patients with ARBs (n = 30), the ARBs insignificantly reduced levels of ba-PWV (pooled mean change difference -188, 95% CI -687, 311, p = 0.24 with significant heterogeneity) as compared to other hypertensive agents (ACEIs and CCBs, n = 77). Interestingly, ARBs (n = 20) had a superior capacity to reduce levels of ba-PWV than CCBs (n = 20) in single study results (mean change difference -400, 95% CI -477, -322, p < 0.05). In 7 trials which included a total of 653 patients, treatment with ARBs (n = 308) also insignificantly reduced cf-PWV (pool mean change difference -0.197, 95% CI -0.54, 0.14, p = 0.218) as compared to other anti-hypertensive agents.
Conclusions: Our data suggested that ARBs had a similar effect as other anti-hypertensive agents in reducing ba-PWV and cf-PWV. Upon systematic review, the renin-angiotensin-axis system mechanism seems more significant than the direct vessel dilatation system in anti-arterial stiffness mechanism.
Key words: Angiotension receptor blockage; Arterial stiffness; Meta-analysis; Systematic review.