Background: Decreased hepatitis C virus (HCV) clearance, faster cirrhosis progression and higher HCV RNA levels are associated with Human Immunodeficiency virus (HIV) coinfection. The CD4+ T helper cytokines interleukin (IL)-21 and IL-17A are associated with virus control and inflammation, respectively, both important in HCV and HIV disease progression. Here, we examined how antigen-specific production of these cytokines during HCV mono and HIV/HCV coinfection was associated with HCV virus control.
Methods: We measured HCV-specific IL-21 and IL-17A production by transwell cytokine secretion assay in PBMCs from monoinfected and coinfected individuals. Viral control was determined by plasma HCV RNA levels.
Results: In acutely infected individuals, those able to establish transient/complete HCV viral control tended to have stronger HCV-specific IL-21-production than non-controllers. HCV-specific IL-21 production also correlated with HCV viral decline in acute infection. Significantly stronger HCV-specific IL-21 production was detected in HAART-treated coinfected individuals. HCV-specific IL-17A production was not associated with lower plasma HCV RNA levels in acute or chronic HCV infection and responses were stronger in HIV coinfection. HCV-specific IL-21/ IL-17A responses did not correlate with microbial translocation or fibrosis. Exogenous IL-21 treatment of HCV-specific CD8+ T cells from monoinfected individuals enhanced their function although CD8+ T cells from coinfected individuals were somewhat refractory to the effects of IL-21.
Conclusions: These data show that HCV-specific IL-21 and IL-17A-producing T cells are induced in HIV/HCV coinfection. In early HIV/HCV coinfection, IL-21 may contribute to viral control, and may represent a novel tool to enhance acute HCV clearance in HIV/HCV coinfected individuals.