Endoplasmic reticulum (ER) stress has been reported to be involved in many cardiovascular diseases such as atherosclerosis, diabetes, myocardial ischemia, and hypertension that ultimately result in heart failure. XBP1 is a key ER stress signal transducer and an important pro-survival factor of the unfolded protein response (UPR) in mammalian cells. The aim of this study was to establish a role for XBP1 in the deregulation of pro-angiogenic factor VEGF expression and potential regulatory mechanisms in hypertrophic and failing heart. Western blots showed that myocardial XBP1s protein was significantly increased in both isoproterenol (ISO)-induced and pressure-overload-induced hypertrophic and failing heart compared to normal control. Furthermore, XBP1 silencing exacerbates ISO-induced cardiac dysfunction along with a reduction of myocardial capillary density and cardiac expression of pro-angiogenic factor VEGF-A in vivo. Consistently, experiments in cultured cardiomyocytes H9c2 (2-1) cells showed that UPR-induced VEGF-A upregulation was determined by XBP1 expression level. Importantly, VEGF-A expression was increased in failing human heart tissue and blood samples and was correlated with the levels of XBP1. These results suggest that XBP1 regulates VEGF-mediated cardiac angiogenesis, which contributes to the progression of adaptive hypertrophy, and might provide novel targets for prevention and treatment of heart failure.
Keywords: XBP1; angiogenesis; cardiac hypertrophy; unfolded protein response; vascular endothelial growth factor-A.
© 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.