Background: High-sensitivity troponin I (hs-TnI) and troponin T (hs-TnT) are moderately correlated and independently related to outcome in atrial fibrillation (AF). Rate controlling therapy has been shown to reduce hs-TnT, however the potential impact on hs-TnI levels, and whether this differs from the effects on hs-TnT, has not been investigated previously.
Methods: Sixty patients with stable, permanent AF without heart failure or known ischemic heart disease were included in a randomised crossover study (mean age 71 ± 9 years, 18 women). Diltiazem 360 mg, verapamil 240 mg, metoprolol 100 mg, and carvedilol 25 mg were administered once daily for three weeks, in a randomised sequence. At baseline and on the last day of each treatment period, hs-TnI was measured at rest and after a maximal exercise test and compared to hs-TnT.
Results: Hs-TnI and hs-TnT correlated moderately at baseline (rs = 0.582, p < 0.001). All drugs reduced both the resting and the peak exercise levels of hs-TnI compared with baseline (p < 0.001 for all). The decline in resting hs-TnI and hs-TnT values relative to baseline levels was similar for all drugs except for verapamil, which reduced hs-TnI more than hs-TnT (p = 0.017). Levels of hs-TnI increased significantly in response to exercise testing at baseline and at all treatment regimens (p < 0.001 for all). The relative exercise-induced increase in hs-TnI was significantly larger compared to hs-TnT at baseline (p < 0.001), on diltiazem (p < 0.001) and on verapamil (p = 0.001).
Conclusions: In our population of stable, permanent AF patients, all four rate control drug regimens reduced hs-TnI significantly, both at rest and during exercise. The decline in hs-TnI and hs-TnT levels associated with beta-blocker and calcium channel blocker treatment was similar, except for a larger relative decrease in hs-TnI levels following verapamil treatment.
Trial registration: www.clinicaltrials.gov ( NCT00313157 ).
Keywords: Atrial fibrillation; Biomarkers; Exercise testing; High-sensitivity cardiac troponin I; High-sensitivity cardiac troponin T; Rate control.