Objectives: The objective of this study was to analyse the microbiological traits and the population structure of carbapenemase-producing (CP) Escherichia coli isolates collected in Spain between 2012 and 2014.
Methods: Two-hundred-and-thirty-nine E. coli isolates non-susceptible to carbapenems were studied. The carbapenemase genes and the phylogenetic groups were characterized using PCR. MLST was carried out using the typing schemes of the University of Warwick and the Institut Pasteur. The diversity of the population structure was estimated by calculating a simple diversity index (SDI).
Results: One-hundred-and-twenty-one isolates (50.6%) produced carbapenemases, of which 87 (71.9%) were OXA-48, 27 (22.3%) were VIM-1, 4 (3.3%) were KPC-2, 2 (1.7%) were NDM and 1 (0.8%) was IMP-22; 4 isolates were collected in 2012, 40 in 2013 and 77 in 2014. Ertapenem was more sensitive than imipenem or meropenem for screening for OXA-48-producing E. coli. Using the Warwick typing scheme, 59 different STs were identified, the most prevalent being ST131 (16.5%). The population diversity was higher among VIM-1-producing isolates (SDI = 81.5%) than among OXA-48-producing isolates (SDI = 44.8%). The Pasteur scheme had a higher discrimination capability (SDI = 55.4%) than the Warwick scheme (SDI = 48.8%).
Conclusions: A progressive increase in the prevalence of CP E. coli was observed, mainly due to the dissemination of OXA-48 producers. The most sensitive method for detecting decreased susceptibility of CP E. coli to carbapenems was disc diffusion with ertapenem using the EUCAST screening cut-offs. The spread of CP E. coli was due to a polyclonal population. The Pasteur scheme showed the highest discrimination power. Surveillance is crucial for the early detection of CP E. coli.
© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: [email protected].