Purpose: The goals of our study were (a) to validate a molecular expression signature (cell cycle progression [CCP] score and molecular prognostic score [mPS; combination of CCP and pathological stage {IA or IB}]) that identifies stage I lung adenocarcinoma (ADC) patients with a higher risk of cancer-specific death following curative-intent surgical resection, and (b) to determine whether mPS stratifies prognosis within stage I lung ADC histological subtypes.
Methods: Formalin-fixed, paraffin-embedded stage I lung ADC tumor samples from 1200 patients were analyzed for 31 proliferation genes by quantitative RT-PCR. Prognostic discrimination of CCP score and mPS was assessed by Cox proportional hazards regression, using 5-year lung cancer-specific mortality as the primary outcome.
Results: In multivariable analysis, CCP score was a prognostic marker for 5-year lung cancer-specific mortality (HR=1.6 per interquartile range; 95% CI, 1.14-2.24; P=0.006). In a multivariable model that included mPS instead of CCP, mPS was a significant prognostic marker for 5-year lung cancer-specific mortality (HR=1.77; 95% CI, 1.18-2.66; P=0.006). Five-year lung cancer-specific survival differed between low-risk and high-risk mPS groups (96% vs 81%; P<0.001). In patients with intermediate-grade lung ADC of acinar and papillary subtypes, high mPS was associated with worse 5-year lung cancer-specific survival (P<0.001 and 0.015, respectively), compared with low mPS.
Conclusion: This study validates CCP score and mPS as independent prognostic markers for lung cancer-specific mortality and provides quantitative risk assessment, independent of known high-risk features, for stage I lung ADC patients treated with surgery alone.
Keywords: CCP score; adjuvant therapy; chemotherapy; molecular prognostic score; overall survival.