Objectives: This study aims to investigate the effect of modifying tricalcium silicate (TCS) cements on three key properties by adding ZrO2.
Materials and methods: TCS powders were prepared by adding ZrO2 at six different concentrations. The powders were mixed with 1 M CaCl2 solution at a 3:1 weight ratio. Biodentine (contains 5 wt.% ZrO2) served as control. To evaluate the potential effect on mechanical properties, the mini-fracture toughness (mini-FT) was measured. Regarding bioactivity, Ca release was assessed using ICP-AES. The component distribution within the cement matrix was evaluated by Feg-SEM/EPMA. Cytotoxicity was assessed using an XTT assay.
Results: Adding ZrO2 to TCS did not alter the mini-FT (p = 0.52), which remained in range of that of Biodentine (p = 0.31). Ca release from TSC cements was slightly lower than that from Biodentine at 1 day (p > 0.05). After 1 week, Ca release from TCS 30 and TCS 50 increased to a level that was significantly higher than that from Biodentine (p < 0.05). After 1 month, Ca release all decreased (p < 0.05), yet TCS 0 and TCS 50 released comparable amounts of Ca as at 1 day (p > 0.05). EPMA revealed a more even distribution of ZrO2 within the TCS cements. Particles with an un-reacted core were surrounded by a hydration zone. The 24-, 48-, and 72-h extracts of TCS 50 were the least cytotoxic.
Conclusions: ZrO2 can be added to TCS without affecting the mini-FT; Ca release was reduced initially, to reach a prolonged release thereafter; adding ZrO2 made TCS cements more biocompatible.
Clinical relevance: TCS 50 is a promising cement formulation to serve as a biocompatible hydraulic calcium silicate cement.
Keywords: Ca release; Component distribution; Cytotoxicity; Mini-fracture toughness; Tricalcium silicate; Zirconium oxide.