Tubular higher fullerenes are prototypes of finite-length end-capped carbon nanotubes (CNTs) whose structures can be accurately characterized by single-crystal X-ray diffraction crystallography. We present here the isolation and crystallographic characterization of two unprecedented higher fullerenes stabilized by the encapsulation of a La2C2 cluster, namely, La2C2@Cs(574)-C102, which has a perfect tubular cage corresponding to a short (10, 0) zigzag carbon nanotube, and La2C2@C2(816)-C104 which has a defective cage with a pyracylene motif inserting into the cage waist. Both cages provide sufficient spaces for the large La2C2 cluster to adopt a stretched and nearly planar configuration, departing from the common butterfly-like configuration which has been frequently observed in midsized carbide metallofullerenes (e.g., Sc2C2@C80-84), to achieve strong metal-cage interactions. More meaningfully, our crystallographic results demonstrate that the defective cage of C2(816)-C104 is a starting point to form the other three tubular cages known so far, i.e., D5(450)-C100, Cs(574)-C102, and D3d(822)-C104, presenting evidence for the top-down formation mechanism of fullerenes. The fact that only the large La2C2 cluster has been found in giant fullerene cages (C>100) and the small clusters M2C2 (M = Sc, Y, Er, etc.) are present in midsized fullerenes (C80-C86) indicates that geometrical matching between the cluster and the cage, which ensures strong metal-cage interactions, is an important factor controlling the stability of the resultant metallofullerenes, in addition to charge transfer.