The molecular mechanisms whereby transforming growth factor-β (TGF-β) promotes clear cell renal cell carcinoma (ccRCC) progression is elusive. The cell membrane bound TGF-β type I receptor (ALK5), was recently found to undergo proteolytic cleavage in aggressive prostate cancer cells, resulting in liberation and subsequent nuclear translocation of its intracellular domain (ICD), suggesting that ALK5-ICD might be a useful cancer biomarker. Herein, the possible correlation between ALK5 full length (ALK5-FL) and ALK5-ICD protein, phosphorylated Smad2/3 (pSmad2/3), and expression of TGF-β target gene PAI-1, was investigated in a clinical ccRCC material, in relation to tumor grade, stage, size and cancer specific survival. Expression of ALK5-FL, ALK5-ICD, pSmad2/3 and PAI-1 protein levels were significantly higher in higher stage and associated with adverse survival. ALK5-ICD, pSmad2/3 and PAI-1 correlated with higher grade, and ALK5-FL, pSmad2/3 and PAI-1 protein levels were significantly correlated with larger tumor size. Moreover, the functional role of the TGF-β - ALK5-ICD pathway were investigated in two ccRCC cell lines by treatment with ADAM/MMP2 inhibitor TAPI-2, which prevented TGF-β-induced ALK5-ICD generation, nuclear translocation, as well as cell invasion. The present study demonstrated that canonical TGF-β Smad2/3 pathway and generation of ALK5-ICD correlates with poor survival and invasion of ccRCC in vitro.
Keywords: ALK5; PAI-1; TGF-β signaling pathway; ccRCC; pSmad2/3.