Mechanistic Projection of First-in-Human Dose for Bispecific Immunomodulatory P-Cadherin LP-DART: An Integrated PK/PD Modeling Approach

Clin Pharmacol Ther. 2016 Sep;100(3):232-41. doi: 10.1002/cpt.393. Epub 2016 Jul 21.

Abstract

A bispecific immunomodulatory biotherapeutic molecule (P-cadherin LP-DART) based on the Dual Affinity Re-Targeting (DART) scaffold has been developed as a potential antitumor treatment showing efficacy in preclinical testing. A minimal anticipated biological effect level (MABEL) approach was applied to project the first-in-human (FIH) dose, because of its immune agonistic properties following target engagement. The pharmacological activity of P-cadherin LP-DART is driven by binding to both P-cadherin on the tumor cells and CD3 on T cells. Therefore, the concentration of the tri-molecular synapse formed between drug, T cell, and tumor cell, rather than drug concentration, is responsible for efficacy. A mechanistic pharmacokinetic/pharmacodynamic (PK/PD)-driven approach was explored to understand the exposure-response relationship based on the synapse concentration to project the MABEL dose. Orthogonal approaches including PK-driven and receptor occupancy calculations were also investigated. This study showcases the application of PK/PD modeling in immune-oncology, and could potentially be implemented for other bispecific biotherapeutics.

MeSH terms

  • Animals
  • Biological Availability
  • Cadherins / administration & dosage*
  • Cadherins / pharmacokinetics*
  • Cadherins / pharmacology
  • Cytokines / biosynthesis
  • Cytotoxicity Tests, Immunologic
  • Dose-Response Relationship, Drug
  • Female
  • Humans
  • Male
  • Models, Biological
  • Molecular Targeted Therapy / methods*
  • Receptors, Antigen, T-Cell / metabolism*
  • T-Lymphocytes / metabolism*

Substances

  • Cadherins
  • Cytokines
  • Receptors, Antigen, T-Cell