Background: Endothelial dysfunction contributes to the development of vascular complication in diabetes. Arginase has emerged as a key mechanism behind endothelial dysfunction by its reciprocal regulation of nitric oxide production by substrate competition. We hypothesized that increased arginase activity in patients with type 2 diabetes shifts the metabolism of l-arginine from nitric oxide synthase to arginase resulting in an increase in the plasma ratio of ornithine/citrulline, and that this ratio is associated with endothelial dysfunction.
Methods: Forearm endothelium-dependent vasodilatation and endothelium-independent vasodilatation were determined in 15 patients with type 2 diabetes and 10 healthy controls and related to amino acids reflecting arginase and nitric oxide synthase activity.
Results: Compared to healthy controls, patients with diabetes had impaired endothelium-dependent vasodilatation and endothelium-independent vasodilatation. The ratios of ornithine/citrulline and proline/citrulline were 60% and 95% higher, respectively, in patients with diabetes than in controls (p < 0.001). The plasma ornithine/arginine ratio was 36% higher in patients with diabetes, indicating increased arginase activity. These ratios were inversely correlated to endothelium-dependent vasodilatation and endothelium-independent vasodilatation.
Conclusion: Patients with diabetes and macrovascular complications have increased amino acid ratios reflecting a shift in arginine metabolism due to arginase activation. These changes are inversely related to endothelial function supporting that arginase activity contributes to endothelial dysfunction.
Keywords: Arginase; coronary artery disease; endothelial function; nitric oxide.
© The Author(s) 2016.