Human mesenchymal stem cells (MSCs) are a promising tool for therapeutic applications in cell-based therapy and regenerative medicine, and MSCs from the human palatine tonsils have recently been used as a new tissue source. However, the understanding of the proliferation and differentiation capacity of tonsil-derived MSCs (T-MSCs) is limited. In this study, we compared the proliferative potential of T-MSCs with those of bone marrow MSCs (BM-MSCs) and adipose tissue-derived MSCs (A-MSCs). Additionally, we investigated the underlying mechanism of T-MSC function. We showed that T-MSCs proliferated faster than A-MSCs and BM-MSCs in methylthiazolyl diphenyl-tetrazolium (MTT) assays, cell count assays, and cell cycle distribution analyses. DNA microarray and real-time PCR analyses revealed that the expression of fibroblast growth factor-5 (FGF5) was significantly elevated in T-MSCs compared with those in A-MSCs and BM-MSCs. Cell growth curves showed a difference in cell growth between untreated cells and siFGF5-treated T-MSCs. The administration of recombinant human FGF5 (rhFGF5) to the cells transfected with siFGF5 led to a significant increase in the proliferation rates. The administration of rhFGF5 to T-MSCs led to an increase in the levels of phosphorylated ERK1/2. However, treatment with siFGF5 resulted in an overall decrease in the level of phosphorylated ERK1/2. The osteogenic differentiation of T-MSCs was reduced following siFGF5 transfection, and it recovered to near-normal levels when rhFGF5 was added. These findings indicate that T-MSCs show significantly higher proliferative potential compared with those of BM-MSCs and A-MSCs. FGF5 facilitates cell proliferation through ERK1/2 activation, and it influences the osteogenic differentiation of T-MSCs.