Identification of bioactive compounds directly from complex herbal extracts is a key issue in the study of Chinese herbs. The present study describes the establishment and application of a sensitive, efficient, and convenient method based on surface plasmon resonance (SPR) biosensors for screening active ingredients targeting tumor necrosis factor receptor type 1 (TNF-R1) from Chinese herbs. Concentration-adjusted herbal extracts were subjected to SPR binding assay, and a remarkable response signal was observed in Rheum officinale extract. Then, the TNF-R1-bound ingredients were recovered, enriched, and analyzed by UPLC-QTOF/MS. As a result, physcion-8-O-β-D-monoglucoside (PMG) was identified as a bioactive compound, and the affinity constant of PMG to TNF-R1 was determined by SPR affinity analysis (K D = 376 nM). Pharmacological assays revealed that PMG inhibited TNF-α-induced cytotoxicity and apoptosis in L929 cells via TNF-R1. Although PMG was a trace component in the chemical constituents of the R. officinale extract, it had considerable anti-inflammatory activities. It was found for the first time that PMG was a ligand for TNF receptor from herbal medicines. The proposed SPR-based screening method may prove to be an effective solution to analyzing bioactive components of Chinese herbs and other complex drug systems. Graphical abstract Scheme of the method based on SPR biosensor for screening and recovering active ingredients from complex herbal extracts and UPLC-MS for identifying them. Scheme of the method based on SPR biosensor for screening and recovering active ingredients from complex herbal extracts and UPLC-MS for identifying them.
Keywords: Bioactive ingredients; Chinese herbs; Surface plasmon resonance; Tumor necrosis factor receptor; UPLC-MS.