Kinesin and dynein motors drive bidirectional cargo transport along microtubules and have a critical role in polarized cargo trafficking in neurons [1, 2]. The kinesin-2 family protein KIF17 is a dendrite-specific motor protein and has been shown to interact with several dendritic cargoes [3-7]. However, the mechanism underlying the dendritic targeting of KIF17 remains poorly understood [8-11]. Using live-cell imaging combined with inducible trafficking assays to directly probe KIF17 motor activity in living neurons, we found that the polarized sorting of KIF17 to dendrites is regulated in multiple steps. First, cargo binding of KIF17 relieves autoinhibition and initiates microtubule-based cargo transport. Second, KIF17 does not autonomously target dendrites, but enters the axon where the actin cytoskeleton at the axon initial segment (AIS) prevents KIF17 vesicles from moving further into the axon. Third, dynein-based motor activity is able to redirect KIF17-coupled cargoes into dendrites. We propose a three-step model for polarized targeting of KIF17, in which the collective function of multiple motor teams is required for proper dendritic sorting.
Keywords: KIF17; autoinhibition; axon initial segment; dynein; motor protein; neuron; transport.
Copyright © 2016 Elsevier Ltd. All rights reserved.