Prostate cancer (PCa) is the most common solid tumor in males and the second leading cause of cancer-related deaths in males in the United States. The current first line therapy for metastatic PCa is androgen deprivation therapy and is initially effective against the disease. However, castrate resistant prostate cancer (CRPC) develops in many men within 18-36 months, rendering this treatment ineffective. Chemotherapy, with a class of drugs known as taxanes is the standard-of-care cytotoxic option in metastatic castrate resistant PCa (mCRPC). However, the overall survival advantage for chemotherapy in mCRPC is only 2.2 months and the cancer cells often become resistant to these drugs as well. Once patients fail chemotherapy the progression to death is inevitable. Extracellular vesicles (EVs) are involved in cell signaling and play a role in cancer progression. Previous work has demonstrated that EVs are involved in the development of drug resistance in cancer cells. We report the reversal of taxane resistance and tumorigenic phenotype in PCa cells after EVs treatment. This study suggests that EVs represent a potentially novel therapeutic treatment option for CRPC.