Computational fluid dynamic measures of wall shear stress are related to coronary lesion characteristics

Heart. 2016 Oct 15;102(20):1655-61. doi: 10.1136/heartjnl-2016-309299. Epub 2016 Jun 14.

Abstract

Objective: To assess the distribution of pressure and shear-related forces acting on atherosclerotic plaques and their association with lesion characteristics using coronary CT angiography (cCTA)-based computational fluid dynamics (CFD) model of epicardial coronary arteries.

Methods: Patient-specific models of epicardial coronary arteries were reconstructed from cCTA in 80 patients (12 women, 63.8±9.0 years). The pressure and wall shear stress (WSS) in left anterior descending coronary arteries were assessed using CFD. High-risk plaques were defined as the presence of at least one of the following adverse plaque characteristics: low-density plaque, positive remodelling, napkin-ring sign and spotty calcification.

Results: At resting condition, 39.5% of stenotic segments (% diameter stenosis 52.3±14.4%) were exposed to high WSS (>40 dyne/cm(2)). When the stenotic lesion was subdivided into three segments, the distribution of WSS was different from that of pressure change and its magnitude was highest at minimal lumen area (p<0.001). High pressure gradient, proximal location, small lumen and short length were independent determinants of WSS (all p<0.05). The plaques exposed to the highest WSS tertile had a significantly greater proportion of high-risk plaques. The addition of WSS to % diameter stenosis significantly improved the measures of discrimination and reclassification of high-risk plaques (area under the curves from 0.540 to 0.718, p=0.031; net reclassification index 0.827, p<0.001).

Conclusions: The cCTA-based CFD method can improve the identification of high-risk plaques and the risk stratification for coronary artery disease patients by providing non-invasive measurements of WSS affecting coronary plaques.

Publication types

  • Multicenter Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Arterial Pressure
  • Computed Tomography Angiography*
  • Coronary Angiography / methods*
  • Coronary Artery Disease / diagnostic imaging*
  • Coronary Artery Disease / physiopathology
  • Coronary Circulation*
  • Coronary Stenosis / diagnostic imaging*
  • Coronary Stenosis / physiopathology
  • Coronary Vessels / diagnostic imaging*
  • Coronary Vessels / physiopathology
  • Female
  • Fractional Flow Reserve, Myocardial
  • Humans
  • Hydrodynamics
  • Hyperemia / physiopathology
  • Male
  • Middle Aged
  • Models, Cardiovascular*
  • Patient-Specific Modeling*
  • Plaque, Atherosclerotic*
  • Predictive Value of Tests
  • Retrospective Studies
  • Risk Assessment
  • Risk Factors
  • Rupture, Spontaneous
  • Stress, Mechanical
  • Vascular Calcification / diagnostic imaging
  • Vascular Calcification / physiopathology