Network Analysis of Genome-Wide Selective Constraint Reveals a Gene Network Active in Early Fetal Brain Intolerant of Mutation

PLoS Genet. 2016 Jun 15;12(6):e1006121. doi: 10.1371/journal.pgen.1006121. eCollection 2016 Jun.

Abstract

Using robust, integrated analysis of multiple genomic datasets, we show that genes depleted for non-synonymous de novo mutations form a subnetwork of 72 members under strong selective constraint. We further show this subnetwork is preferentially expressed in the early development of the human hippocampus and is enriched for genes mutated in neurological Mendelian disorders. We thus conclude that carefully orchestrated developmental processes are under strong constraint in early brain development, and perturbations caused by mutation have adverse outcomes subject to strong purifying selection. Our findings demonstrate that selective forces can act on groups of genes involved in the same process, supporting the notion that purifying selection can act coordinately on multiple genes. Our approach provides a statistically robust, interpretable way to identify the tissues and developmental times where groups of disease genes are active.

MeSH terms

  • Gene Regulatory Networks / genetics*
  • Genetic Diseases, Inborn / genetics*
  • Genetic Variation / genetics
  • Genome / genetics*
  • Hippocampus / embryology*
  • Humans
  • Models, Genetic
  • Mutation / genetics
  • Protein Interaction Maps / genetics*

Grants and funding

The authors received no specific funding for this work.