Prediction of epileptic seizures based on heart rate variability

Technol Health Care. 2016 Nov 14;24(6):795-810. doi: 10.3233/THC-161225.

Abstract

Background: Until now, different approaches have been published to resolve the problem of predicting epileptic seizures. The results are reminiscent of a substantial need for improvements in these methods to reach the stage of the clinical application. Our aim is to develop a reliable epileptic seizure prediction algorithm based on the Heart Rate Variability (HRV) analysis.

Methods: We analyzed the HRV of sixteen epileptic patients with a total of 170 seizures, to predict the occurrence of seizures based on the dynamic changes of Electrocardiogram (ECG) during the pre-ictal period. Time and frequency-domain features were computed forthe consecutive time windows with a length of five minutes. An adaptive decision threshold method was used for raising alarms. Predictions were made when selected features exceeded the decision thresholds.

Results: For the seizure occurrence period (SOP) of 4:30 minutes, and intervention time (IT) of 110 Sec, the presented method showed an average sensitivity of 78.59%, and average false prediction rate of 0.21/Hr, which indicates that the system has superiority to the random predictor.

Conclusion: The proposed approach shows a potential in the monitoring of epileptic patients and improving their life quality. The overall performance of the algorithm is a step forward for clinical implementation.

Keywords: Epilepsy; HRV; circadian rhythm; prediction; threshold.

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Electroencephalography / methods*
  • Epilepsy / physiopathology*
  • Female
  • Heart Rate / physiology*
  • Humans
  • Male
  • Middle Aged
  • Predictive Value of Tests*
  • Sensitivity and Specificity
  • Young Adult