The therapeutic landscape of melanoma is improving rapidly. Targeted inhibitors show promising results, but drug resistance often limits durable clinical responses. There is a need for in vivo systems that allow for mechanistic drug resistance studies and (combinatorial) treatment optimization. Therefore, we established a large collection of patient-derived xenografts (PDXs), derived from BRAF(V600E), NRAS(Q61), or BRAF(WT)/NRAS(WT) melanoma metastases prior to treatment with BRAF inhibitor and after resistance had occurred. Taking advantage of PDXs as a limitless source, we screened tumor lysates for resistance mechanisms. We identified a BRAF(V600E) protein harboring a kinase domain duplication (BRAF(V600E/DK)) in ∼10% of the cases, both in PDXs and in an independent patient cohort. While BRAF(V600E/DK) depletion restored sensitivity to BRAF inhibition, a pan-RAF dimerization inhibitor effectively eliminated BRAF(V600E/DK)-expressing cells. These results illustrate the utility of this PDX platform and warrant clinical validation of BRAF dimerization inhibitors for this group of melanoma patients.
Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.