Conformal Graphene-Decorated Nanofluidic Sensors Based on Surface Plasmons at Infrared Frequencies

Sensors (Basel). 2016 Jun 16;16(6):899. doi: 10.3390/s16060899.

Abstract

An all-in-one prism-free infrared sensor based on graphene surface plasmons is proposed for nanofluidic analysis. A conformal graphene-decorated nanofluidic sensor is employed to mimic the functions of a prism, sensing plate, and fluidic channel in the tradition setup. Simulation results show that the redshift of the resonant wavelength results in the improvement of sensitivity up to 4525 nm/RIU. To reshape the broadened spectral lines induced by the redshift of the resonant wavelength to be narrower and deeper, a reflection-type configuration is further introduced. By tuning the distance between the graphene and reflective layers, the figure of merit (FOM) of the device can be significantly improved and reaches a maximum value of 37.69 RIU(-1), which is 2.6 times that of the former transmission-type configuration. Furthermore, the optimized sensor exhibits superior angle-insensitive property. Such a conformal graphene-decorated nanofluidic sensor offers a novel approach for graphene-based on-chip fluidic biosensing.

Keywords: conformal grapheme; infrared; nanofluidic; sensor; surface plasmons.