Alveolar rhabdomyosarcoma (ARMS) represents a block in differentiation of malignant myoblasts. Genomic events implicated in the pathogenesis of ARMS involve PAX3-FKHR (FOXO1) or PAX7-FKHR (FOXO1) translocation with corresponding fusion transcripts and fusion proteins. Commonalities in ARMS include uncontrollable proliferation and failure to differentiate. The genomic-molecular correlates contributing to the etiopathogenesis of ARMS incorporate PAX3-FKHR (FOXO1) fusion protein stimulation of the IGF-1R, c-Met and GSK3-β pathways. With sequential morphoproteomic profiling on such a case in conjunction with personalized tumor graft testing, we provide an expanded definition of the biology of PAX3-FKHR (FOXO1) ARMS that integrates genomics, proteomics and pharmacogenomics. Moreover, therapies that target the genomic and molecular biology and lead to tumoral regression and/or tumoral growth inhibition in a xenograft model of ARMS are identified.
Significance: This case study could serve as a model for clinical trials using relatively low toxicity agents in both initial and maintenance therapies to induce remission and reduce the risk of recurrent disease in PAX3-FKHR (FOXO1) subtype of ARMS.
Keywords: PAX3-FKHR subtype; alveolar rhabdomyosarcoma; morphoproteomics; targeted therapy; xenograft testing.