Background: Consequences of hyperoxemia, such as acute lung injury, atelectasis, and reduced bacterial clearance, might promote ventilator-associated pneumonia (VAP). The aim of our study was to determine the relationship between hyperoxemia and VAP.
Methods: This retrospective observational study was performed in a 30-bed mixed ICU. All patients receiving invasive mechanical ventilation for more than 48 hours were eligible. VAP was defined using clinical, radiologic, and quantitative microbiological criteria. Hyperoxemia was defined as PaO2 > 120 mmHg. All data, except those related to hyperoxemia, were prospectively collected. Risk factors for VAP were determined using univariate and multivariate analysis.
Results: VAP was diagnosed in 141 of the 503 enrolled patients (28 %). The incidence rate of VAP was 14.7 per 1000 ventilator days. Hyperoxemia at intensive care unit admission (67 % vs 53 %, OR = 1.8, 95 % CI (1.2, 29), p <0.05) and number of days spent with hyperoxemia were significantly more frequent in patients with VAP, compared with those with no VAP. Multivariate analysis identified number of days spent with hyperoxemia (OR = 1.1, 95 % CI (1.04, 1.2) per day, p = 0.004), simplified acute physiology score (SAPS) II (OR = 1.01, 95 % CI (1.002, 1.024) per point, p < 0 .05), red blood cell transfusion (OR = 1.8, 95 % CI (1.2, 2.7), p = 0.01), and proton pomp inhibitor use (OR = 1.9, 95 % CI (1.03, 1.2), p < 0.05) as independent risk factors for VAP. Other multiple regression models also identified hyperoxemia at ICU admission (OR = 1.89, 95 % CI (1.23, 2.89), p = 0.004), and percentage of days with hyperoxemia (OR = 2.2, 95 % CI (1.08, 4.48), p = 0.029) as independent risk factors for VAP.
Conclusion: Hyperoxemia is independently associated with VAP. Further studies are required to confirm our results.
Keywords: Arterial oxygen tension; Critical care; Hyperoxia; Outcome, Hyperoxemia; Prevention; Ventilator-associated pneumonia.