The partial and integral enthalpies of mixing of liquid ternary Ni-Sn-Zn alloys were determined. The system was investigated along two sections xNi/xSn ≈ 1:9, xNi/xSn ≈ 1:6 at 1073 K and along two sections xSn/xZn ≈ 9:1, xSn/xZn ≈ 4:1 at 873 K. The integral enthalpy of mixing at each temperature is described using the Redlich-Kister-Muggianu model for substitutional ternary solutions. In addition, the experimental results were compared with data calculated according to the Toop extrapolation model. The minimum integral enthalpy of approx. -20000 J mol-1 corresponds to the minimum in the constituent binary Ni-Sn system, the maximum of approx. 3000 J mol-1 is equal to the maximum in the binary Sn-Zn system.
Keywords: calorimetry; enthalpy of mixing; metallic alloys; ternary.